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Abstract 
We develop the Regulatory Drift Budget (RDB), a mathematically grounded and audit-ready 

risk-control framework that converts statistical drift monitoring into quantitative, pre-

authorized regulatory action. Let W_t denote a principled distributional distance (e.g., 

integral probability metrics such as MMD or Wasserstein) between field data and the 

premarket reference; let g(W) be a monotone risk map (calibrated from post-market 

evidence). The cumulative risk budget is defined by 𝓑(t)=∫₀ᵗ g(W_u)du. Two thresholds 

govern action: a pre-alert at θ·B_reg and a mandatory intervention at B_reg, after which the 

budget is reset (𝓑→0) per a Predetermined Change Control Plan (PCCP). Under a mild 

additive hazard model λ(t)=λ₀(t)+κg(W_t), the RDB cap yields a non-asymptotic bound 

H(t)≤H₀(t)+κB_reg, implying P{failure≤t}≤1−exp{−H₀(t)−κB_reg}. We further show that for 

convex g, just‑in‑time activation at 𝓑=B_reg minimizes accumulated risk (area under g), and 

we formalize a group-aware extension (RDB‑G) for multi-site governance. Simulated case 

studies across SaMD, IVD, and general MD demonstrate earlier, safer interventions relative 

to instantaneous thresholds or PSI-like heuristics, reduced seasonal performance swing in 

IVDs, and measurable Risk Priority Number (RPN) reductions in FMEA. Finally, we derive 

an operational lifetime estimator E[T_life]=B_reg/ E[g(W_t)], linking lifecycle governance to 

risk consumption. RDB closes the long‑standing gap between monitoring, risk, and 

compliance, enabling reproducible, continuous, and regulator-ready control. 

1. Introduction 
Data and concept drift are among the principal threats to sustained safety and effectiveness 

of medical devices. In AI-enabled Software as a Medical Device (SaMD), non-stationary input 

distributions or evolving clinical practice can degrade performance; in In Vitro Diagnostics 

(IVDs), seasonal prevalence shifts and reagent changes perturb analytical behavior; and in 

traditional Medical Devices (MDs), environmental and component aging gradually erode 

measurement fidelity. While current post-market surveillance (PMS) practices can detect 

anomalies, most frameworks still lack a quantitative, regulator-endorsed trigger that 

connects statistical evidence of drift to an authorized change action. 

 

This work introduces the Regulatory Drift Budget (RDB): a continuous, quantitative, and 

auditable mechanism that turns drift monitoring into risk‑calibrated control. The 

construction has four pillars: (i) a principled drift metric W_t based on integral probability 

metrics that admit finite-sample guarantees; (ii) a monotone risk map g transforming drift 

magnitude into incremental hazard; (iii) the cumulative budget 𝓑(t)=∫₀ᵗ g(W_u)du with 

policy thresholds (θ·B_reg and B_reg) that translate budget consumption into pre-alerts and 

triggers under an approved PCCP; and (iv) a reset operation (𝓑→0) upon execution of the 

predetermined change (e.g., recalibration, model refresh, or maintenance), thereby 

establishing a closed loop from monitoring to action. 

 

Theoretical properties follow from a minimal hazard decomposition λ(t)=λ₀(t)+κg(W_t): 

bounding the integrated budget yields a provable bound on cumulative hazard and failure 



probability; moreover, for convex g, a just-in-time trigger at 𝓑=B_reg minimizes 

accumulated risk. We also formalize a group-aware budget (RDB‑G) that enables multi-site 

or subgroup fairness monitoring and fleet-wide governance. Beyond risk control, RDB 

furnishes a natural definition of risk‑controlled operational lifetime, E[T_life]=B_reg/ 

E[g(W_t)], tying device lifecycle to empirically observed drift rates. These elements 

collectively bridge the gap between PMS, ISO 14971 risk control, and PCCP execution, 

yielding a regulator-ready, reproducible mechanism suitable for SaMD, IVD, and MD. 

 

Contributions of this manuscript are fourfold: (1) a unified formalism for quantitative drift 

budgeting with explicit regulatory thresholds; (2) theoretical guarantees on hazard and 

trigger optimality with a group-aware extension; (3) calibrated implementation guidance 

across device classes and a mapping to FMEA that demonstrably reduces RPN; and (4) 

operational lifetime estimation and deployment patterns (embedded and fleet-level) that 

operationalize dynamic lifecycle governance. The remainder of the paper develops the 

mathematical model and calibration procedures, presents simulated evaluations and FMEA 

impact, and discusses integration pathways with PCCP/QMSR/IVDR and future research 

needs. 

2. Methods 

2.1 Formal definitions and notation 

Regulatory Drift Budget (RDB). Let W_t denote a principled drift metric at calendar time t, 

measuring the divergence between a premarket reference distribution P and a field 

distribution Q_t. We select integral probability metrics (IPMs) as drift metrics—chiefly the 

maximum mean discrepancy (MMD) and (sliced) Wasserstein distances—owing to their 

finite-sample properties and robustness in high-dimensional settings. A monotone, 

Lipschitz risk map g: ℝ≥0 → ℝ≥0 transforms drift magnitude into instantaneous risk 

pressure. The cumulative budget is defined by 𝓑(t) = ∫₀ᵗ g(W_u) du. Two policy thresholds 

are specified: a pre-alert at θ·B_reg (0<θ<1) and a mandatory intervention at B_reg, after 

which the budget is reset (𝓑→0) under a Predetermined Change Control Plan (PCCP). 

Hazard linkage. Under a minimal additive hazard model λ(t) = λ₀(t) + κ·g(W_t) with κ>0, 

bounding 𝓑(t) by B_reg yields H(t) ≤ H₀(t) + κ·B_reg for cumulative hazard H(t) = ∫₀ᵗ λ(u) 

du, implying P{failure≤t} ≤ 1 − exp{−H₀(t) − κ·B_reg}. For convex g, a just‑in‑time trigger at 

𝓑=B_reg minimizes ∫ g(W) over any interval. 

2.2 Construction of W_t across device classes (SaMD, IVD, MD) 

SaMD (AI/ML). W_t is computed from input or latent-space distributional shifts relative to a 

fixed reference, using IPMs on: (i) raw input features; (ii) calibrated model 

outputs/uncertainty; and/or (iii) last-layer embeddings. A rolling validation set or periodic 

outcome labels—when available—anchor performance-linked drift components (e.g., 

changes in AUROC, PPV, calibration error). 



IVD. W_t is constructed from analytical/QC signals: daily control values (means, variances), 

reagent lot characteristics, and calibration coefficients. Distance is computed between the 

joint distribution of QC/calibration vectors in the current window and the verified baseline 

or most recent reset window. 

Medical Devices (MD). For non-AI devices, W_t derives from device performance indicators 

(sensor bias, SNR, optical sharpness, geometric accuracy) and environmental factors 

(temperature/humidity), comparing their joint distribution to baseline. Routine self-tests or 

phantom scans provide reference anchors. 

2.3 Calibration of the risk map g(·) and κ 

We adopt a quadratic risk map g(w)=αw+βw² with α,β≥0 to capture linear risk 

accumulation at small drifts and accelerated risk at large drifts. Parameters (α,β) and the 

hazard scale κ are calibrated from retrospective post-market evidence via survival 

modeling (Cox proportional hazards with time‑varying covariates) and Poisson regression 

on event counts, using device‑time cohorts that link drift summaries to adverse events or 

recall surrogates. Calibration is validated by out-of-sample concordance, inspection of 

partial residuals, and sensitivity analyses to alternative g(·) forms (e.g., Huber/saturating 

maps). 

2.4 Trigger design, reset policy, and PCCP execution 

Instantaneous guardrail: a high quantile threshold on W_t catches abrupt shifts in a single 

window. Primary policy: the accumulated budget trigger at 𝓑(t)=B_reg; pre-alert at 

𝓑(t)=θ·B_reg. Upon trigger, predetermined changes are executed per PCCP (e.g., model 

refresh, recalibration, maintenance), followed by budget reset (𝓑→0). Trigger criteria and 

actions are documented in the Algorithm Change Protocol (SaMD) or maintenance SOPs 

(IVD/MD), with acceptance tests and post-change monitoring windows. 

2.5 Data validity gates (Yes/No gating) 

To ensure that drift estimates reflect true device behavior, each window is filtered by 

mandatory gates: (i) correct UDI/DI and software/firmware version; (ii) recent 

calibration/QC pass (e.g., daily controls within limits, scheduled calibrations completed); 

(iii) adequate sample size and orderly timestamps; (iv) no sensor saturation or transport 

errors. Windows failing any gate are excluded and separately logged as data quality or 

maintenance events. 

2.6 Controller architecture and deployment modes 

Embedded mode: the controller on-device ingests windowed data, computes W_t (IPM), 

updates 𝓑(t) ≈ 𝓑(t−Δ)+g(W_t)Δ, checks thresholds, logs events, and executes PCCP changes. 

Cloud/offline mode: a fleet‑level controller maintains per‑device budgets, supports 

group‑aware governance (RDB‑G), and orchestrates staged rollouts after pre-alerts. 

State persistence and auditability are ensured via tamper‑evident logs {timestamp, 

device/site, version/lot, W_t, g(W_t), 𝓑(t), event∈{pre_alert,trigger,reset}}. Software 



implementing RDB is verified under the QMS software lifecycle; RDB logs feed PMS/PSUR 

and regulator queries. 

2.7 Statistical properties and guarantees 

IPM estimators: unbiased/bias-corrected MMD and sliced-Wasserstein admit finite-sample 

concentration bounds. Thresholds are tuned to achieve target false-alarm rates (e.g., 5%). 

Under λ(t)=λ₀+κg(W_t), the cap 𝓑(t)≤B_reg bounds cumulative hazard regardless of drift 

path. For convex g, just‑in‑time triggers minimize ∫g(W), making the policy time‑optimal 

within the permitted scope. Group-aware budgets (RDB‑G) enforce subgroup fairness by 

maintaining parallel budgets per site or demographic stratum. 

2.8 Implementation details and reproducibility 

RDB is implemented with windowed ingestion, robust outlier handling, kernel aggregation 

for MMD, and batched sliced‑OT for high-dimensional settings. Calibration notebooks 

estimate (α,β,κ) from replay datasets; configuration files specify gates, windows, and 

thresholds. Full code and logs are packaged for audit. 

3. Results 

3.1 Simulated Case Studies 

We evaluated the Regulatory Drift Budget (RDB) framework in three representative, 

simulation-based settings spanning Software as a Medical Device (SaMD), In Vitro 

Diagnostics (IVD), and general Medical Devices (MDs). Each scenario instantiated a 

principled drift metric W_t (via integral probability metrics) and applied a calibrated risk 

map g(W) to accumulate a budget 𝓑(t)=∫ g(W_u)du. Policy thresholds (θ·B_reg for 

pre‑alerts; B_reg for execution) controlled triggers and resets under a Predetermined 

Change Control Plan (PCCP). 

• SaMD (ECG demographic shift). A gradual age-driven shift altered ECG feature 

distributions over months; W_t combined a sliced‑Wasserstein distance on features with a 

performance-linked component. RDB issued pre‑alerts well before performance 

degradation became clinically material and triggered one model refresh per year. 

• IVD (seasonal prevalence). The assay’s PPV/NPV varied seasonally. RDB triggered an 

interim recalibration mid‑season, reducing peak‑to‑trough PPV/NPV swings compared to 

lot‑verification alone (CLSI EP26). 

• MD (optics/sensor decay). Progressive optical sharpness and SNR decay were reflected in 

W_t; RDB accumulated small deviations and executed quarterly preventive maintenance, 

keeping the device within its approved operating envelope. 

3.2 Trigger Behavior and Detection Delays 

Across scenarios, budget trajectories (𝓑(t)) showed distinct accumulation patterns that 

mirrored the underlying drift. RDB pre‑alerts provided lead time to prepare changes, and 

full triggers occurred ahead of the largest performance drops. In a univariate, abrupt shift, a 



PSI rule could detect somewhat earlier than a simple MMD trigger; however, under realistic 

multivariate, gradual drifts (SaMD, MD), RDB reached the execution threshold earlier and 

with fewer missed detections than point-threshold or PSI heuristics. 

3.3 Summary Tables 

Table 1. Trigger detection performance (simulated). RDB improves timeliness for gradual, 

multivariate drifts while maintaining a targeted false-alarm rate. 

Scenario Method Mean detection 
delay (days) 

False alarms / 
year 

Triggers / year 

SaMD (ECG 
drift) 

RDB (IPM-
based) 

240 ± 30 ≈0.05 
(targeted) 

≈1 (PCCP 
refresh) 

SaMD (ECG 
drift) 

PSI (baseline) 300 ± 45 ≈0.05 (tuned) ≈1 (delayed) 

MD (optics 
decay) 

RDB 90 ± 10 (per 
cycle) 

≈0.05 
(targeted) 

≈4 (quarterly 
PM) 

MD (optics 
decay) 

Control chart 150 ± 20 ≈0.01 (strict 
limits) 

≈1 (year-end) 

IVD (seasonal) RDB ~180 ± 20 (to 
interim 
recalibration) 

≈0.05 
(targeted) 

1–2 

IVD (seasonal) Threshold-only ~230 ± 25 ≈0.05 (tuned) 0–1 
Table 2. IVD seasonal performance stability. RDB-driven interim recalibration reduces 

PPV/NPV seasonal swings compared to EP26 alone. 

Metric EP26-only EP26 + RDB Relative reduction 
PPV range (max–
min) 

0.388 
(0.702→0.314) 

0.204 
(0.802→0.598) 

47.5% 

NPV range (max–
min) 

0.00740 
(0.9982→0.9908) 

0.00444 
(0.9990→0.9946) 

40.0% 

3.4 Summary 

The simulation-based evidence indicates that RDB offers earlier, safer, and more consistent 

control across heterogeneous drift regimes. By integrating risk over time, RDB preempts 

substantial degradation, stabilizes diagnostic performance (IVD), and reduces maintenance 

latency (MD), while providing a regulator-ready audit trail of pre‑alerts, triggers, and resets. 

4. Discussion 

4.1 Interpretation of Findings 

The Regulatory Drift Budget (RDB) reframes post‑market surveillance from a reactive, 

indicator‑driven exercise into a proactive, risk‑bounded control process. By integrating a 

calibrated mapping from drift magnitude to risk (g(W)) over time, RDB quantifies how 

much of the device’s permissible risk envelope has been consumed. Across simulated SaMD, 

IVD, and MD settings, RDB produced earlier and more reliable interventions than 



point‑threshold or PSI heuristics, particularly under gradual, multivariate drift—precisely 

the regime where classical alarms tend to under‑react. The observed stabilization of IVD 

PPV/NPV and the reduction in maintenance latency for MDs illustrate how converting 

detection into budgeted action yields measurable clinical and operational benefits. 

4.2 Relation to Existing Monitoring and Control Practices 

RDB complements, rather than replaces, established practices. In IVDs, CLSI EP26 provides 

acceptance testing at lot introduction; RDB extends control to the intervals between lot 

changes by continuously monitoring analytical and calibration drift. In laboratory QC, 

Westgard rules identify out‑of‑control states on control materials; RDB aggregates 

sub‑threshold deviations over time, aligning alerts with cumulative risk rather than single 

excursions. In SaMD, PSI and similar heuristics provide coarse distributional signals; RDB’s 

integral probability metrics and calibrated g(W) lend statistical rigor and a safety‑relevant 

interpretation. In all cases, RDB transforms ‘when to worry’ into ‘when to act’, with an 

auditable justification linked to the device’s risk budget. 

4.3 Integration with Regulatory Frameworks 

Under FDA’s Predetermined Change Control Plan (PCCP), manufacturers must specify 

quantitative triggers, bounded change scopes, validation steps, and post‑change monitoring. 

RDB supplies the missing quantitative trigger: a pre‑alert at θ·B_reg to prepare changes and 

an execution threshold at B_reg to mandate them. In ISO 14971 terms, RDB functions as a 

dynamic risk control (Clause 7) driven by post‑production information (Clause 10), with 

acceptance criteria expressed as 𝓑(t)≤B_reg. Under IVDR Annex XIII, RDB provides an 

objective performance‑drift threshold that can be embedded in PMPF plans. Within 

QMSR/ISO 13485, RDB logs and triggers become part of design change records and PMS 

evidence, facilitating audits and eSTAR submissions. 

4.4 Limitations and Threats to Validity 

First, the hazard model λ(t)=λ₀+κ·g(W_t) is a simplifying assumption; real‑world risk may 

depend on latent factors not captured by W_t or may be non‑additive. Mitigation: calibrate κ 

and g(W) with multi‑site replay, include performance‑linked components (e.g., AUROC/PPV 

deltas) in W_t, and conduct sensitivity analyses to alternative g(·) forms (Huber, saturating). 

Second, calibration demands adequate outcome or high‑quality proxy signals; sparse events 

can yield high uncertainty. Mitigation: hierarchical pooling across cohorts, informative 

priors, and periodic recalibration. Third, subgroup fairness: a single global budget can mask 

disparate impacts. Mitigation: group‑aware budgets (RDB‑G) per site/demographic with 

parallel thresholds, and equity‑focused monitoring. Finally, data governance: invalid 

windows (sensor saturation, missed QC, mis‑versioned software) can bias W_t; strict 

Yes/No gates and audit trails are essential. 

4.5 Implementation Guidance 

A practical deployment proceeds as follows: (1) define device‑class‑appropriate W_t (IPMs 

on inputs/embeddings/QC vectors); (2) pre‑specify gates, windows, θ, and candidate B_reg; 

(3) calibrate α,β,κ via retrospective replay of PMS and quality logs; (4) validate thresholds 



against target false‑alarm rates, and demonstrate benefit/risk via simulation; (5) encode 

RDB triggers and actions in the PCCP or SOPs; (6) deploy an embedded or fleet‑level 

controller with tamper‑evident logs; (7) review triggers and outcomes periodically, 

recalibrating as needed. Manufacturers should align trigger actions with verification 

batteries (acceptance tests) and short post‑change monitoring windows, and include RDB 

evidence in PSUR/PMPF and inspection‑readiness packages. 

4.6 Future Work 

Future efforts include: (i) formal generalization bounds linking IPM drift to task 

performance under clinically meaningful loss; (ii) robust online estimators for g(W) with 

uncertainty quantification and budget‑robust triggers; (iii) cost‑aware policies that jointly 

minimize lifecycle risk and operational cost (change vs. failure); (iv) prospective multi‑site 

studies establishing κ and validating RDB‑G fairness guarantees; and (v) cryptographically 

attested logging for PCCP activations to strengthen auditability. 
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6. Positioning and Competitor Analysis 
This section clarifies RDB’s unique value proposition relative to adjacent practices and 

tools. RDB is not a new statistical metric per se; it is a risk‑calibrated control framework 

that converts drift monitoring into quantitative, regulator‑ready triggers (pre‑alert θ·B_reg; 

execution at B_reg) with a provable bound on cumulative hazard and an operational lifetime 

estimator. The comparison below emphasizes the decision‑and‑compliance layer that RDB 

contributes, in contrast to purely descriptive or single‑parameter monitors. 

Approach Scope Drift 
Measure 

Risk Link Trigger 
Model 

Regulat
ory Fit 

Lifecycle 
Tie-in 

RDB (this work) SaMD / 
IVD / 
MD 

IPMs 
(MMD/O
T) + perf-
linked 
terms 

g(W) & κ 
→ 
bounded 
hazard 

Budget 
𝓑(t)=∫g(
W)du; 
θ·B_reg & 
B_reg; 
reset 

PCCP 
trigger; 
ISO 
14971 
(Clause
s 7 & 
10); 
IVDR 
Annex 
XIII; 
QMSR 

E[T_life]=
B_reg / 
E[g(W_t)] 

SPC / Control 
Charts 
(Shewhart/CUSUM
/EWMA) 

Lab/Pro
cess 
metrics 

Single-
paramete
r 
excursion

Indirect 
(limit 
breaches) 

Point 
threshold
s / run 
rules 

Good 
for QC, 
not 
PCCP 

Calendar-
based; no 
explicit 
lifetime 



s trigger 
by 
design 

Westgard Rules 
(QC) 

IVD QC 
material
s 

Rule-
based on 
control 
samples 

Indirect Rule 
breaches 

Lab QC; 
not a 
risk 
budget 

None 

PSI / KL / JS 
heuristics 

Distribut
ion drift 
(generic
) 

Binned/b
ased 
divergen
ces 

Weak/heu
ristic 

Point 
threshold
s 

Monitor
ing; no 
PCCP 
semanti
cs 

None 

Sigma-metrics; 
CLSI EP26/EP23 

IVD lot & 
method 
eval 

Analytica
l 
acceptabi
lity 

Method-
specific 
proxies 

Acceptanc
e tests at 
change 
points 

Strong 
for lot 
intro; 
not 
continu
ous 
PMPF 
trigger 

Planned 
intervals; 
no budget 

MLOps Monitoring 
Platforms 

AI 
observa
bility 
(SaMD) 

Perf/drift 
dashboar
ds 

Varies; not 
calibrated 

Alarms / 
alerts 

Ops-
centric; 
lacks 
formal 
PCCP/I
SO 
tie‑ins 

None 

 

6.1 RDB’s Unique Contribution 

• Decision‑grade, risk‑calibrated triggers with explicit pre‑alert/execute thresholds and 

reset, not merely descriptive drift alarms. 

• A provable bound on cumulative hazard (H(t)≤H₀+κB_reg) under a minimal model, 

allowing quantitative risk acceptance criteria. 

• A principled tie‑in to regulatory artifacts (PCCP triggers, ISO 14971 controls, QMSR 

records, IVDR PMPF). 

• A lifecycle estimator E[T_life]=B_reg/E[g(W_t)] that connects monitoring to 

maintenance/retraining and end‑of‑life decisions. 

6.2 Required Evidence for Dominance in Practice 

To establish RDB as a de‑facto standard above adjacent approaches, we recommend: (i) 

multi‑site retrospective replay linking drift to field outcomes to calibrate κ and validate g(·); 

(ii) a prospective pilot showing reduced time‑to‑update and stabilized clinical metrics; (iii) 

cost‑aware optimization of B_reg (change vs. failure costs); (iv) subgroup fairness with 

RDB‑G; and (v) inspection‑ready logs and PCCP addenda demonstrating reproducible 

triggers and resets. 



7. Operational Lifetime under Risk‑Budget Control: Lemma and Proof 

Sketch 
This section formalizes the definition of operational lifetime under risk‑budget control and 

provides proof sketches for the main results. We use ASCII notation to ensure robust 

rendering across archives: drift is W_t ≥ 0; the risk map is g(W) ≥ 0; the accumulated budget 

is B(t) = ∫_0^t g(W_u) du; the policy cap is B_reg > 0; and the hazard linkage is λ(t) = λ_0(t) + 

κ g(W_t), κ > 0. 

Assumptions (A1–A5) 

A1 (Drift metric). W_t is an integral probability metric (e.g., MMD or sliced‑Wasserstein) 

measuring distributional shift between a fixed pre‑market reference P and field data Q_t. 

A2 (Risk map). g: R_{≥0} → R_{≥0} is monotone and locally Lipschitz with g(0)=0; g(W_t) is 

calibrated from retrospective post‑market evidence. 

A3 (Budget). B(t) = ∫_0^t g(W_u) du with pre‑alert at θ B_reg (0<θ<1) and execution at 

B_reg followed by a reset B→0 (per PCCP). 

A4 (Hazard linkage). λ(t) = λ_0(t) + κ g(W_t); cumulative hazard H(t) = ∫_0^t λ(u) du = 

H_0(t) + κ B(t). 

A5 (Gates and governance). Data validity gates (UDI/DI, QC/calibration, sample size, 

integrity) hold for windows used to compute W_t; logs are tamper‑evident. 

Lemma 1 (Hitting‑time characterization). 

Define the risk‑controlled operational lifetime of an epoch as T_life = inf{ t ≥ 0 : B(t) = B_reg 

}. Under A1–A5, this is the unique earliest time at which the risk acceptance criterion B(t) ≤ 

B_reg is saturated and a predetermined change must execute. In particular, if θ ∈ (0,1), the 

lead time between pre‑alert and execution is T_lead = inf{ t ≥ 0 : B(t) = B_reg } − inf{ t ≥ 0 : 

B(t) = θ B_reg }. 

Lemma 2 (Expected lifetime under stationary drift). 

Assume g(W_t) is stationary and ergodic with μ = E[g(W_t)] ∈ (0, ∞). Then, by the ergodic 

theorem, (1/t) ∫_0^t g(W_u) du → μ almost surely, so B(t) ≈ μ t for large t, and 

    E[T_life] = B_reg / μ. 

This links the expected operational lifetime to the risk budget and the empirically observed 

drift‑to‑risk rate. In slowly varying environments, a piecewise‑stationary extension applies 

with μ replaced by a time‑averaged effective rate μ_eff. 

Theorem 1 (Risk‑optimality of just‑in‑time triggers). 

Suppose g is convex and twice continuously differentiable. Among all admissible policies 

that do not permit actions before θ B_reg (θ<1), triggering exactly at B = B_reg minimizes 

∫_0^T g(W_u) du over any finite horizon T. Proof sketch: by Jensen and an exchange 

argument on partitions, deferring action past the cap increases the area under g; earliest 

admissible activation minimizes the cumulative risk contribution. 



Corollaries and Practical Consequences. 

(C1) Risk bound: if B(t) ≤ B_reg, then H(t) ≤ H_0(t) + κ B_reg, implying P{failure ≤ t} ≤ 1 − 

exp(−H_0(t) − κ B_reg). Thus B_reg can be chosen from a target failure bound. 

(C2) Lead‑time estimate: with μ = E[g(W_t)], the expected pre‑alert lead time is E[T_lead] ≈ 

(1 − θ) B_reg / μ. 

(C3) Group‑aware governance (RDB‑G): define per‑group budgets B_g(t) with caps B_reg^g 

to ensure no subgroup exhausts its budget disproportionately; lifetime per group is T_life^g 

= inf{t: B_g(t)=B_reg^g}. 

(C4) Non‑stationary bounds: if g(W_t) is bounded with m ≤ g(W_t) ≤ M over the epoch, then 

B_reg/M ≤ T_life ≤ B_reg/m; this yields conservative planning intervals even without strict 

stationarity. 

Cost‑Aware Policy Sketch. 

Let C_change be the cost of a PCCP action and L_fail the cost of an adverse failure. Over long 

horizons, an average‑cost objective can be approximated by: 

    J(B_reg) ≈ C_change * (μ / B_reg) + L_fail * (1 − exp(−κ B_reg)), 

where μ/B_reg is the expected rate of triggers (from Lemma 2), and 1 − exp(−κ B_reg) is the 

worst‑case bound on failure probability between actions (C1). Minimizing J(B_reg) over 

B_reg>0 yields a principled, auditable trade‑off between action frequency and residual risk. 

Remarks. 

(R1) The choice of g(·) and κ must be empirically calibrated; performance‑linked 

components (e.g., AUROC, PPV drift) should augment distributional W_t to tighten the risk 

linkage. 

(R2) Data gates and tamper‑evident logs are essential for auditability; invalid windows 

must be excluded to prevent bias in lifetime estimation. 

(R3) The RDB lifetime formalism integrates naturally with ISO 14971: Clause 7 (risk 

control) supplies the acceptance criterion B ≤ B_reg; Clause 10 (post‑production 

information) supplies the data stream g(W_t). 

  



Appendix A. FMEA Comparison: With and Without RDB 

This appendix summarizes the reduction in Detection (D) and overall Risk Priority Number 

(RPN) when the Regulatory Drift Budget (RDB) is implemented as a detection control 

within ISO 14971 risk management and PCCP execution. 

Failure 
Mode 

Effect of 
Failure 

Cause Severi
ty (S) 

Occurre
nce (O) 

Detecti
on (D) 
w/o 
RDB 

Detecti
on (D) 
with 
RDB 

RP
N 
w/
o 
RD
B 

RP
N 
wit
h 
RD
B 

AI model 
drift 

Reduced 
diagnostic 
accuracy 

Covariate 
shift in 
input data 

8 4 7 3 22
4 

96 

IVD 
reagent 
lot 
variabilit
y 

Analytical 
bias; false 
positives 

Unnoticed 
lot-to-lot 
drift 

7 3 6 3 12
6 

63 

Optics 
quality 
degradati
on in MD 

Poor 
image 
clarity; 
misdiagn
osis 

Sensor 
aging; 
contaminat
ion 

9 3 5 2 13
5 

54 

  



Appendix B. Benefits and Competitive Positioning 

Technical Benefits 

• Unified cumulative drift measure as a risk budget B(t)=∫ g(W_t) dt 

• Risk mapping g(W)=α·W + β·W² (or robust forms) linking drift magnitude to hazard 

• Captures severity × duration: persistent small drifts invisible to point thresholds 

• Pre‑alert at θ·B_reg enables proactive preparation for change 

• Dynamic reset after PCCP execution keeps lifecycle monitoring continuous 

• Cross‑modality applicability: SaMD, IVD (QC/lot), MD (sensor/optics/calibration) 

• Operational lifetime estimator: E[T_life] = B_reg / E[g(W_t)] 

Regulatory & Compliance Benefits 

• Supplies the quantitative trigger missing in PCCP (FDA) 

• Aligns ISO 14971 Clause 7 (risk control) with Clause 10 (post‑production information) 

• Supports IVDR Annex XIII (PMPF) via numeric performance‑drift thresholds 

• Generates PMS/PSUR‑ready logs: {W_t, g(W), B(t), pre‑alert, trigger, reset} 

• Auditability for QMSR/ISO 13485 

• Common language across FDA, IMDRF, and EU AI Act/MDR/IVDR 

Scientific & Analytical Benefits 

• Cumulative hazard linkage λ(t)=λ₀+κ·g(W_t) with P_fail ≤ 1−exp(−κ·B_reg) 

• IPMs (MMD, sliced‑OT) with finite‑sample/high‑dimensional guarantees 

• Replay & simulation for calibration (κ, α, β, θ, B_reg) and sensitivity analysis 

• Decision‑grade metrics tied directly to regulatory and risk decisions 

Operational & Managerial Benefits 

• Continuous QC via rolling windows (data‑driven, not calendar‑driven) 

• Predictive maintenance triggered at B(t)≈0.8·B_reg 

• Lifecycle governance via budget exhaustion epochs 

• Fleet‑level (RDB‑G) governance for multi‑site deployments 

• Lower false alerts vs. single‑point thresholds 

Competitor Landscape (high‑level) 

• RDB: budget‑based trigger (θ·B_reg / B_reg) with reset; explicit risk link; 

PCCP/ISO/IVDR fit; lifetime model 

• SPC/Westgard: point/rule breaches; QC‑focused; indirect risk link; calendar governance 

• PSI/KL/JS: heuristic point thresholds; monitoring‑only; no regulatory trigger semantics 

• Sigma/EP26/EP23: method‑specific acceptance tests; not continuous PMPF triggers 

• MLOps alerts: dashboards without calibrated, regulator‑ready triggers 
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